

Modeling Heat Transfer in SEN during Preheating

Yonghui Li Brian G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objectives

- 1) Validate Singh VBA SEN heat-transfer model with analytical solution
- 2) Validate Singh VBA SEN model with measurements conducted during preheating
- Improve and apply validated models to study SEN heat transfer during preheating, cool-down, and casting

Singh VBA Spreadsheet Model of SEN

Singh's SEN Model - Main page

ing sortium		WOUCI	IVIG	in pa	ge
					4
Geometry of Nozzle					Clear
Outer Radius of Refractory	78	mm			
Enter Number of layers	3			Assian	Pefracton
Emmissivity	0.1			Pri	operties
Preheat					
Ambient Temperature	19.0	<u>.</u>			
Initial Nozzle Temperature	9.0	°C.			
FlameTemperature	1262.0	°C			
Internal heat transfer Coefficient (forced)	20.0	W/(m ² K)			1
External heat transfer Coefficient (free)	10	W/(m ² K)		Prehea	at Simulation
Preheat Time	120.0	min.			
Time Step	0.01	S		View P	Preheat Plots
Time interval between printing	0.5	min.			
Times to plot from start of preheat (min.)	1	3	10	30	120
Points to plot temperature, Distance from outer surface (mm)	0	10.76	32.16	40.7	41.4
Cooldown					
Ambient Temperature (Outside)	19.0	-0			
Ambient remperature (inside)	19.0	-0			1
Internal heat transfer Coefficient	10.00	W/(m*K)		Cooldon	wn Simulation
External heat transfer Coefficient	10	W/(m*K)			
Cooldown Time	15.0	min.		View C	ooldown Plote
Time interval between printing	0.01	S min		10110	ooldown hiota
Times to plot from start of cooldown (min.)	1	2	5	10	15
points to plot temperature. Distance from outer surface (mm)	0	10.76	32.16	40.7	41.4
Casting	, i i				
Pour Temperature	1550.0	°C			1
Solidification Temperature	1525.0	°C		Assign	Steel Properties
Ambient Temperature (Outside)	19.0	°C			
Internal heat transfer Coefficient	33594.11	W/(m ² K)		Conti	ing Simulation
External heat transfer Coefficient (free)	10.0	W/(m ² K)		Casu	ing Simulation
Casting Time	5.0	min.			
Time Step	0.01	S		View	Casting Plots
Time Interval between printing	0.02	min.			
Steel Layer thickness	10.0	mm			
Steel Layer mesh size	0.5	mm			
Times to plot from start of casting (min.)	0.5	1	1.5	2	5

.

•

Test problem conditions

Test conditions	Input value
Inside temperature	600 °C
Outside temperature	20 °C
Inside heat transfer coefficient	70 W/m ² K
Outside heat transfer coefficient	20 W/m ² K
Inside radius	40 mm
Outside radius	80 mm
Heat conductivity	20 W/m K
Density	2460 kg/m ³
Specific heat	1500 J/kg K

Metals Processing Simulation Lab

* form Hyoung-Jun Lee, Test_Abaqus model_Hyoung-jun Lee, 2011, 07

University of Illinois at Urbana-Champaign

Yonghui Li 7

Comparison of Abaqus and Singh-model

SEN Preheating

• Preheating is by fuel and oxygen combustion; product gas mixed with entrained air flows into SEN, which increases nozzle wall temperature.

Preheating Experiment

• The preheating mechanism is the fuel and oxygen combustion, then the product gas mixed with air flows into SEN, which make SEN temperature increased.

Casting Consortiun

Metals Processing Simulation Lab

Approach of Sensitivity Analysis

Choose standard conditions of all variables to get standard result
For each variable, choose a reasonable engineering estimate of its most extreme value
For each variable, calculate a new result using its new value while keeping the same constant standard conditions for all of the others
Compare the new results with the standard result

Why need Sensitivity analysis?

* To determine which variables are most important

University of Illinois at Urbana-Champaign

Flame Temperature Model—Main Page

Main Page "						
Set GASEQ executable file path:	Browse	C:\Program Files (x86)\GASEQ\Gaseq.exe				
		4				
Select Fuel :	Methane					
Select Oxygen Source for combustion gas	Oxygen 💌					
Oxygen Enrichment relative to stoichiometric (%)	0]				
Air Entrainment relative to stoichiometric (%)	165.8	Draduata				
Temperature (°C)	19	1262 1				
Pressure (atm)	1	1				
Species	Reactants (%)	Reactants (moles)	Products (moles)	Products (%)		
Methane (CH ₄)	5.3	1.00E+00	0.00E+00	0.0		
Oxygen (O ₂)	28.3	5.32E+00	3.30E+00	17.6		
Nitrogen (N ₂)	66.4	1.25E+01	1.25E+01	66.3		
Carbon dioxide (CO _n)	0.0	0.00E+00	1.00E+00	5.3		
Carbon monoxide (CO)	0.0	0.00E+00	1.92E-05	0.0		
Hydrogen (H ₂)	0.0	0.00E+00	1.41E-05	0.0		
Water (H ₂ O)	0.0	0.00E+00	2.00E+00	10.6		
Hydroxide (OH)	0.0	0.00E+00	2.00E-03	0.0		
Hydrogen atom (H)	0.0	0.00E+00	4.31E-07	0.0		
Oxygen atom (O)	0.0	0.00E+00	5.04E-05	0.0		
		Calculate	Reset	Help		
lame Temperature Model, Varun K. S ersity of Illinois at Urbana-Champaign	ingh, 2010 • Meta	als Processing Simulation Lab		Yonghui Li 15		

Use Flame Temperature Model to calculate tinuous Casting Consortium product temperature

The Stoichiometric reaction for methane is :

•

It should notice that not all the product gas flow into the SEN. Most part of the gas flow from the outside SEN. In a reasonable domain, I assume 2% gas flow into the SEN to get the reasonable flow rate and gas velocity inside the SEN.

In all four cases, Singh VBA SEN heat-transfer model matched with measurement data very well. More work is needed to find the most realistic case.

	Gas Temperature(°C)	Internal forced convection coefficient(W/m ² K)	External forced convection coefficient(W/m ² K)
Case 1	750	47	7
Case 2	900	33	5
Case 3	1000	30	9
Case 4	1262	21	8

Metals Processing Simulation Lab

```
University of Illinois at Urbana-Champaign
```


- > Through Abaqus Test problem, Singh's VBA heat transfer Model works well at one layer with constant material properties.
- Through Sensitivity Analysis, gas product temperature, internal and external convection heat transfer coefficient are the three most important variables affect heat transfer across SEN. Based on sensitivity analysis, we find the major variables to match Singh heat transfer Model with measurement.
- By using Flame Temperature Model, users can predict internal and external heat transfer coefficient. Predicted by this model, 21W/m²K for internal and 7.55 W/m²K for external work very well to match with measurement temperature.

Yonghui Li 19

Yonghui Li 21

Continuous Casting Consortium

(LWB Refractories ,ABB, Arcelor-Mittal, Baosteel, Corus, Nucor Steel, Nippon Steel, Postech, Posco, ANSYS-Fluent.)

Metals Processing Simulation Lab

.

- Rob Nunnington, LWB Refractories
- Graduate students:
 - Hyoung-Jun Lee

University of Illinois at Urbana-Champaign